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It is known that  the solution of the equation 

o*r 2 + a~/Oy  ~ = F(~,), (1) 

where  the vor t i e i ty  F is an a r b i t r a r y  function of r  can be cons idered  as an example  of s t e a d y - s t a t e  flow of an 
ideal fluid. If we suppose that  the motion of an ideal incompress ib le  fluid can be thought of as the th resho ld  
motion of a v iscous  fluid, the function F($) in Eq. (1) can b e r e p l a c e d  by a constant  [1]. 

Let us cons ider  the following s imula t ion  p r o b l e m  with cohes ive ly  se lec ted  p iecewise -cons tan t  vor t ic i ty .  
In a bounded reg ion  D with boundary F it is n e c e s s a r y  to find a continuously d i f ferent iable  solution of the equa-  
t ion 

[ ! r if ~ < 0 (2) 
0~I0x 2 + 0~/0y ~ 

(w and w 1 a r e  nonnegative constants)  under the boundary condition 

*I t  = ~(s). (3) 

If we set  Wl=0 in Eq. (2), we obtain an equation that  desc r ibes  the motion of an ideal fluid accord ing  to a 
previous  scheme  [2]. This  type of flow for  the case  of a bounded reg ion  [3] and for  the case  of an unbounded 
reg ion  has been studied e a r l i e r  [4-7]. 

The p r o b l e m  (2), (3) has  the t r iv i a l  solution 

where  ~0 0 is a harmonic  function sa t i s fy ing  condition (3) and G is Greenvs function of the reg ion  D of the Di r ich-  
let  p rob l em for  the Laplacian.  In [3] it was proved  that  a nontr iv ia l  solution for  the case  wl=O exis ts  under 
pa r t i cu la r  conditions. We will  de r ive  a condition under which a nontr ivia l  solution of the p r o b l e m  (2), (3) exis ts .  
A s imp le r  bound than in [3] will  be obtained f r o m  this condi t ion ' for  r 

Suppose r (s) _<C and let  B 1 be the c i r c l e  of g r ea t e s t  r ad ius ,  such that B1 C D (without loss  of genera l i ty  
we m a y  a s s u m e  that  its cen ter  coincides  with the coordinate  origin),  and let  B 2 be the c i r c l e  of l eas t  rad ius  
with center  at the or ig in ,  such that B2 ~ D. The rad ius  of B 1 is R 1 and that  of B2, R 2. We have the following 
as se r t ion :  When 

olR~ 4Ce (4) 
- R - - U  

the p r o b l e m  (2), (3) has a nontr iv ia l  solution. Let us p rove  this a s se r t ion .  If the c i r c l e  B 1 is  t aken  as the r e -  
gion D and if we set  w~=O in Eq. (2), and let  ~o (s) =C + wiR~/4 in Eq. (3), whenever  (4) holds,  the p r o b l e m  has .  
two nontr iv ia l  solutions (found explicit ly).  That  is ,  in pa r t i cu l a r ,  t he r e  exis ts  a c i r c l e  B a < B l of rad ius  a 
such that the cor responding  solution is negative.  

Let us cons ider  the aux i l i a ry  p r o b l e m  
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0"-r 2 -{- --~Y:0~Pn = 1 ~  (j - t h ~ p " n ) - I t ~  if x ' y ~ B a % ( l + t h ~ n n ) ' T  ff x'y~D~-Ba; 
(~) 

~,[r=~(s) .  (6) 

The solution will  be found in the c l a s s  of functions continuously d i f ferent iable  in D. The p rob l em (5), (6) 
is equivalent  to the in tegra l  equation 

f la  D \ B  a 

The Schauder t h e o r e m  can be used to e s t ab l i sh  the ex is tence  of a solution of Eq. (7) for  any n and x ,  y 
D\B~. We subst i tu te  this solut ion in the r ight  side of Eq. (7), thus defining the function t n  over  all  of D. 

The r e su l t i ng  function is the solut ion of the p r o b l e m  (5), (6). It follows f r o m  the p r o p e r t i e s  of a potent ia l - type  
in tegra l  that  it has f i r s t  de r iva t ives  in eve ry  f ixed c losed  reg ion  B ~ D  ; these  de r iva t ives  sa t i s fy  the I-:61der 
condition, while the constant  and exponent a r e  independent of n. 

We use the Arze l~  t h e o r e m  to es tab l i sh  that the sequence  t n  is compac t  in the space  of continuously dif-  
f e ren t i ab le  functions.  Suppose the subsequence r nk converges  to a continuously d i f ferent iable  function r We 
will  p rove  that r * is a nont r iv ia l  solution of the p r o b l e m  (2), (3). 

Suppose that  Y0 ~ D~--B~ and r (x0, Y0) > 0 at s o m e  point x 0. It wil l  then be g r ea t e r  than ze ro  a lso  in some 
c i r c u l a r  neighborhood. We now cons ider  Eq.'(5) in this neighborhood and take its l imi t  as nk--* ~,  obtaining 
O"~*/Ox 2 + O~*/Oy 2 = --  (01. It can be analogously p roved  that  O"r 2 + O"-r = (o at points at which 
~*< 0. Fur ther ,  when x,y ~_ B~ , 0"-~; *]Ox"+ O~ */Oy 2 = (o . Let  us p rove  that when x, y ~ B ~ * ~  0. It fol- 
lows f rom the p r o p e r t i e s  of Greenrs  function that 

v , ,  (S) 

B a Ba  

where  GB1 and GB2 a r e  GreenTs funetions for  the reg ions  B 1 and B2, r e spec t ive ly .  We find f r o m  Eqs.  (7) and 
(8) that 

0),R~ 
4 ~ GB,d~dx, 

B a 

It follows f r o m  the definition of B a that  the function V is negative in Ba. Then t n ,  that is ,  r  a r e  both 
negat ive  in B a . The fac t  that r sa t i s f i es  the equation as we pass  through the boundary  of B a follows f r o m  its 
s moothnes s. 

We set  wl=O in Eq. (4), obtaining the condition w _>4Ce/R~ under which the re  ex is t s  a nontr ivia l  solution 
of the p r o b l e m  desc r ib ing  flow in the M. A. L a v r e n t ' e v  scheme  for  the case  of a bounded region.  
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