ATTACHMENT OF EDDY FLOWS OF AN IDEAL FLUID

I. I. Vainshtein and V. K. Yurovskii

UDC 532.517

It is known that the solution of the equation

$$
\begin{equation*}
\partial^{2} \psi / \partial x^{2}+\partial^{2} \psi / \partial y^{2}=F(\psi), \tag{1}
\end{equation*}
$$

where the vorticity F is an arbitrary function of ψ, can be considered as an example of steady-state flow of an ideal fluid. If we suppose that the motion of an ideal incompressible fluid can be thought of as the threshold motion of a viscous fluid, the function $F(\psi)$ in Eq. (1) can be replaced by a constant [1].

Let us consider the following simulation problem with cohesively selected piecewise-constant vorticity. In a bounded region D with boundary Γ it is necessary to find a continuously differentiable solution of the equation

$$
\partial^{2} \psi / \partial x^{2}+\partial^{2} \psi / \partial y^{2}=\left\{\begin{array}{rrr}
\omega, & \text { if } & \psi<0 \tag{2}\\
-\omega_{1}, & \text { if } & \psi>0
\end{array}\right.
$$

(ω and ω_{1} are nonnegative constants) under the boundary condition

$$
\begin{equation*}
\left.\psi\right|_{\mathrm{I}}=\varphi(s) . \tag{3}
\end{equation*}
$$

If we set $\omega_{1}=0$ in Eq. (2), we obtain an equation that describes the motion of an ideal fluid according to a previous scheme [2]. This type of flow for the case of a bounded region [3] and for the case of an unbounded region has been studied earlier [4-7].

The problem (2), (3) has the trivial solution

$$
\psi=\varphi_{0}+\frac{\omega_{1}}{2 \pi} \int_{D} \int_{D} G d \xi d \tau
$$

where φ_{0} is a harmonic function satisfying condition (3) and G is Green's function of the region D of the Dirichlet problem for the Laplacian. In [3] it was proved that a nontrivial solution for the case $\omega_{1}=0$ exists under particular conditions. We will derive a condition under which a nontrivial solution of the problem (2), (3) exists. A simpler bound than in [3] will be obtained from this condition for $\omega_{1}=0$.

Suppose $\varphi(\mathrm{s}) \leq \mathrm{C}$ and let B_{1} be the circle of greatest radius, such that $B_{1} \subseteq D$ (without loss of generality we may assume that its center coincides with the coordinate origin), and let B_{2} be the circle of least radius with center at the origin, such that $B_{2} \supseteq D$. The radius of B_{1} is R_{1} and that of B_{2}, R_{2}. We have the following assertion: When

$$
\begin{equation*}
\omega-\frac{\omega_{1} R_{2}^{2}}{R_{1}^{2}} e \geqslant \frac{4 C e}{R_{1}^{2}} \tag{4}
\end{equation*}
$$

the problem (2), (3) has a nontrivial solution. Let us prove this assertion. If the circle B_{1} is taken as the region D and if we set $\omega_{1}=0$ in Eq. (2), and let $\varphi(s)=C+\omega_{1} R_{2}^{2} / 4$ in Eq. (3), whenever (4) holds, the problem has. two nontrivial solutions (found explicitly). That is, in particular, there exists a circle $\mathrm{B}_{a}<\mathrm{B}_{1}$ of radius a such that the corresponding solution is negative.

Let us consider the auxiliary problem

Krasnoyarsk. Tomsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 98-100, September-October, 1976. Or iginal article submitted October 14, 1975.

$$
\begin{gather*}
\frac{\partial^{2} \psi_{n}}{\partial x^{2}}+\frac{\partial^{2} \psi_{n}}{\partial y^{2}}=\left\{\begin{array}{l}
\omega, \quad \text { if } \quad x, y \in B_{a} \\
\frac{\omega}{2}\left(1-\operatorname{th} \psi_{n} n\right)-\frac{\omega_{1}}{2}\left(1+\operatorname{th} \psi_{n} n\right), \text { if } x, y \in D \backslash \bar{B}_{a}
\end{array}\right. \tag{5}\\
\left.\psi_{n}\right|_{\Gamma}=\varphi(s) \tag{6}
\end{gather*}
$$

The solution will be found in the class of functions continuously differentiable in D. The problem (5), (6) is equivalent to the integral equation

$$
\begin{equation*}
\Psi_{n}=\varphi_{0}-\frac{\omega}{2 \pi} \int_{B_{a}} \int_{B^{\prime}} G d \xi d \tau+\frac{1}{4 \pi} \int_{D \backslash B_{a}} \int_{1}\left[\omega_{1}\left(\mathbf{1}+\operatorname{th} \psi_{n} n\right)-\omega\left(1-\operatorname{th} \psi_{n} n\right)\right] G d \xi d \tau \tag{7}
\end{equation*}
$$

The Schauder theorem can be used to establish the existence of a solution of Eq. (7) for any n and x, y $\in D \backslash \bar{B}_{a}$. We substitute this solution in the right side of Eq. (7), thus defining the function $\psi_{\mathbf{n}}$ over all of D . The resulting function is the solution of the problem (5), (6). It follows from the properties of a potential-type integral that it has first derivatives in every fixed closed region $\bar{B} \subset D$; these derivatives satisfy the Holder condition, while the constant and exponent are independent of n.

We use the Arzela theorem to establish that the sequence ψ_{n} is compact in the space of continuously differentiable functions. Suppose the subsequence ψn_{k} converges to a continuously differentiable function ψ^{*}. We will prove that ψ^{*} is a nontrivial solution of the problem (2), (3).

Suppose that $y_{0} \in D \overline{B_{a}}$ and $\psi^{*}\left(\mathbf{x}_{0}, \mathrm{y}_{0}\right)>0$ at some point x_{0}. It will then be greater than zero also in some circular neighborhood. We now consider Eq. ${ }^{\prime}(5)$ in this neighborhood and take its limit as $\mathrm{n}_{\mathrm{k}} \rightarrow \infty$, obtaining $\partial^{2} \psi^{*} / \partial x^{2}+\partial^{2} \psi^{*} / \partial y^{2}=-\omega_{1}$. It can be analogously proved that $\partial^{2} \psi^{*} / \partial x^{2}+\partial^{2} \psi^{*} / \partial y^{2}=\omega$ at points at which $\psi^{*}<0$. Further, when $x, y \models B_{a}, \partial^{2} \psi^{*} / \partial x^{2}+\partial^{2} \psi^{*} / \partial y^{2}=\omega$. Let us prove that when $\mathrm{x}, \mathrm{y} \in B_{a \xi} \psi^{*}<0$. It follows from the properties of Green's function that

$$
\begin{align*}
& \frac{1}{2 \pi} \iint_{D} G d \xi d \tau \leqslant \frac{1}{2 \pi} \iint_{B_{2}} G_{B_{2}} d \xi d \tau \leqslant \frac{R_{2}^{2}}{4} ; \tag{8}\\
& \iint_{B_{a}} G d \xi d \tau \geqslant \iint_{B_{a}} G_{B_{1}} d \xi d \tau\left(x, y \in B_{1}\right),
\end{align*}
$$

where $G_{B_{1}}$ and $G_{B_{2}}$ are Green's functions for the regions B_{1} and B_{2}, respectively. We find from Eqs. (7) and (8) that

$$
\psi_{n}<V=C+\frac{\omega_{1} R_{2}^{2}}{4}-\frac{\omega}{2 \pi} \int_{B_{a}} \int_{B_{1}} G_{B_{1}} d \xi d \tau_{m}
$$

It follows from the definition of B_{a} that the function V is negative in B_{a}. Then ψ_{n}, that is, ψ^{*}, are both negative in B_{a}. The fact that ψ^{*} satisfies the equation as we pass through the boundary of B_{a} follows from its smoothness.

We set $\omega_{1}=0$ in Eq. (4), obtaining the condition $\omega \geq 4 \mathrm{Ce} / \mathrm{R}_{1}^{2}$ under which there exists a nontrivial solution of the problem describing flow in the M. A. Lavrent'ev scheme for the case of a bounded region.

LITERATURE CITED

1. G. K. Batchelor, Introduction to Fluid Dynamics, Cambridge University Press (1967).
2. M. A. Lavrent'ev, Variational Methods in Boundary-Value Problems for Systems of Elliptical-Type Equations [in Russian], Izd. Akad. Nauk SSSR, Moscow (1962).
3. M. A. Gol'dshtik, "Mathematical model of separated flows of an incompressible fluid," Dokl. Akad. Nauk SSSR, 147, No. 6 (1962).
4. A. B. Shabat, "Two attachment problems," Dokl. Akad. Nauk SSSR, 195, No. 6 (1963).
5. A. B. Shabat, "A scheme for plane motion of a fluid for a fracture on the floor," Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1962).
6. S. N. Antontsev and V. D. Lelyukh, "Certain attachment problems for eddy and potential flows," in: Continuum Dynamics [in Russian], Vol. 1, Izd. Inst. Gidrodinam., Sibirsk. Otd., Akad. Nauk SSSR, Novosibirsk (1969).
7. P. I. Plotnikov, "Solvability of a class of problems for attachment of eddy and potential flows," in: Continuum Dynamics [in Russian], Vol. 3, Izd. Inst. Gidrodinam., Sibirsk. Otd., Akad. Nauk SSSR, Novosibirsk (1969).
